在不確定性因素交織的復(fù)雜環(huán)境中,很多行業(yè)的復(fù)蘇節(jié)奏都不及預(yù)期,發(fā)展前景也充滿變數(shù)。而光伏和儲(chǔ)能是罕有的特例,無論是短期業(yè)績?cè)鲩L還是長期市場(chǎng)景氣度,都處于“晴空萬里”的理想狀態(tài)。
以備受矚目的分布式光伏為例:中國光伏行業(yè)協(xié)會(huì)的統(tǒng)計(jì)顯示,2022年,國內(nèi)光伏新增裝機(jī)87.41吉瓦,同比增長59.3%;其中,分布式新增裝機(jī)51.1吉瓦,同比增長74.5%。伴隨裝機(jī)規(guī)模的迅猛上升,“分布式光伏+儲(chǔ)能”市場(chǎng)未來幾年有望快速放量。
盡管前景一片光明,但也要防范難以預(yù)判的“晴空顛簸”,最大限度地守住安全底線是光儲(chǔ)產(chǎn)業(yè)的當(dāng)務(wù)之急。國家能源局發(fā)布的《2023年電力安全監(jiān)管重點(diǎn)任務(wù)》中,將加強(qiáng)光伏發(fā)電安全列入監(jiān)管范疇,并指出應(yīng)以技術(shù)創(chuàng)新驅(qū)動(dòng)行業(yè)可持續(xù)發(fā)展。
從全球范圍來看,光伏發(fā)電各類安全事故中,電氣火災(zāi)發(fā)生的頻次最高,造成的損失也最大。透過諸多案例解析可以發(fā)現(xiàn),電氣火災(zāi)主要由直流拉弧引起,采用光伏發(fā)電系統(tǒng)直流拉弧智能檢測(cè)和快速關(guān)斷技術(shù)(AFCI),以“防消”結(jié)合的方式提高電站的安全防控水平勢(shì)在必行。
然而,傳統(tǒng)的拉弧檢測(cè)存在不少短板,市面上一些“缺斤少兩”的所謂AFCI更容易誤導(dǎo)光伏客戶,不恰當(dāng)?shù)姆婪洞胧┥踔習(xí)黾有碌碾[患。在AFCI持續(xù)進(jìn)化的過程中,既需要市場(chǎng)領(lǐng)頭羊樹立更高的技術(shù)標(biāo)桿,也離不開整個(gè)行業(yè)標(biāo)準(zhǔn)的確立與規(guī)范。
近日,華為數(shù)字能源繼《方博碳討室》后重磅打造《比特與瓦特》欄目,每期邀請(qǐng)專家對(duì)業(yè)內(nèi)的熱點(diǎn)技術(shù)進(jìn)行解讀,力求以生動(dòng)的形式和簡(jiǎn)明的語言,展示數(shù)字技術(shù)與電力電子技術(shù)融合的最新成果。AFCI作為新欄目的開篇之作,其重要性不言而喻,“比特與瓦特”合力筑就光伏安全的實(shí)踐路徑,值得業(yè)界深入探索。
光伏安全面臨的主要挑戰(zhàn)
在電力用戶側(cè)風(fēng)生水起的分布式光伏大多建于工業(yè)或居民區(qū),對(duì)安全防護(hù)的要求較高。但由于分布式光伏具有單體容量小、站址分散、應(yīng)用場(chǎng)景和系統(tǒng)形式復(fù)雜等特征,在應(yīng)對(duì)各類電氣安全挑戰(zhàn)時(shí)難免捉襟見肘。
以電氣安全的角度看,交流防控側(cè)重于供電質(zhì)量和安全,而直流防控的重點(diǎn)是火災(zāi)、電擊和雷擊等事故。就現(xiàn)狀而言,交流的標(biāo)準(zhǔn)比較健全,安全防范技術(shù)也相對(duì)成熟;但直流防范技術(shù)還有較大的提升空間,業(yè)界也將標(biāo)準(zhǔn)研制的重心聚焦于此。
直流拉弧即電路斷點(diǎn)處電流擊穿空氣所產(chǎn)生的持續(xù)火花,是直流安全技術(shù)中亟待破解的難題。在光伏系統(tǒng)中,接點(diǎn)松脫、接觸不良、接線斷裂、絕緣材料老化及破損等原因都可能產(chǎn)生電弧,其會(huì)使接觸部分溫度升高至3000~7000攝氏度,從而引發(fā)火災(zāi)等安全事故。
過往的拉弧檢測(cè)僅支持較低水平的認(rèn)證要求,已無法滿足分布式光伏不斷升級(jí)迭代的需求。一方面,傳統(tǒng)方案中輸入線纜回路長度只有80m,而在實(shí)際的工商業(yè)場(chǎng)景中,逆變器與電站之間的距離遠(yuǎn)超于此;另一方面,既有方案支持的輸入電流僅為14A,但組件最大電流已超過20A,削足適履豈能達(dá)成預(yù)期目標(biāo)?
正是在這樣的背景下,脫穎而出的直流拉弧智能檢測(cè)和快速關(guān)斷技術(shù)(AFCI)被寄予厚望,日益成為守護(hù)光伏安全的新型利器。簡(jiǎn)言之,AFCI是集成于逆變器的新功能,能在電弧產(chǎn)生時(shí)第一時(shí)間識(shí)別并切斷,以保證分布式光伏系統(tǒng)安全,避免電弧高溫導(dǎo)致火災(zāi)。
不過,AFCI的門檻較高,部分廠商由供應(yīng)商提供一體化算法包,再通過不同閾值參數(shù)進(jìn)行調(diào)試,在實(shí)踐中遇到不少難以克服的障礙——要想成功突圍,還需加強(qiáng)積累或另辟蹊徑。
開辟AFCI智能化突圍新路徑
在AFCI披荊斬棘的道路上,主要存在兩只“攔路虎”——噪音適應(yīng)性和場(chǎng)景適配性。很多與AFCI相關(guān)的技術(shù)研發(fā)和產(chǎn)品方案,都因過不了這兩關(guān)而折戟沉沙。
首當(dāng)其沖的是噪聲適應(yīng)性問題。分布式光伏的設(shè)備現(xiàn)場(chǎng)運(yùn)行環(huán)境紛繁多變,傳統(tǒng)方案中的電弧檢測(cè)算法和閾值設(shè)定主要基于人的經(jīng)驗(yàn),在遇到環(huán)境噪聲接近電弧頻譜特征時(shí)無法有效區(qū)分;此外,在并聯(lián)和對(duì)地電弧檢測(cè)中,由于底噪在不同環(huán)境中均會(huì)變化,當(dāng)前技術(shù)水平尚難精準(zhǔn)識(shí)別。
來自場(chǎng)景適配性方面的挑戰(zhàn)也頗為嚴(yán)峻。隨著光伏組件電流和逆變器單機(jī)功率不斷提升,實(shí)際使用場(chǎng)景中輸入側(cè)線纜長度和電弧最大電流均可能超過標(biāo)準(zhǔn)給定的測(cè)試工況。電弧的特征信號(hào)隨電流和線纜長度增加會(huì)逐漸變?nèi)?,?duì)檢測(cè)儀表和算法的精度提出更高要求。
顯而易見,AFCI既有的演進(jìn)軌跡亟待轉(zhuǎn)變,以解決分布式光伏在成長中衍生出的諸多痛點(diǎn)。作為數(shù)字技術(shù)與電力電子技術(shù)融合的倡導(dǎo)者和踐行者,華為探索出一條AFCI智能化躍遷的嶄新路徑,為光伏安全邁向更高境界奠定基礎(chǔ)。
值得關(guān)注的是,華為AI BOOST AFCI智能電弧檢測(cè)方案支持的輸入線纜回路長度最大可達(dá)200m、輸入電流最高為26A,且能有效區(qū)分噪聲和電弧,避免誤報(bào)、漏報(bào);與此同時(shí),華為擁有逆變器與優(yōu)化器的聯(lián)合解決方案,抗干擾能力強(qiáng),是業(yè)內(nèi)唯一兼容0V快速關(guān)斷與AFCI的廠商,可實(shí)現(xiàn)組件級(jí)的電弧故障位置定位,全方位保障光伏安全。
在一系列突破性創(chuàng)新的背后,是華為在ICT和人工智能領(lǐng)域的深厚積累,以及AFCI與深度學(xué)習(xí)技術(shù)的開創(chuàng)性融合。與人工歸納設(shè)計(jì)不同,AI基于高度非線性模型可對(duì)海量數(shù)據(jù)進(jìn)行計(jì)算、迭代,尋找高維空間特征規(guī)律,有效區(qū)分形狀接近的特征信號(hào),對(duì)已有痛點(diǎn)構(gòu)成“降維打擊”。
更為重要的是,借助AI和深度學(xué)習(xí)技術(shù),使檢測(cè)模型具備不斷學(xué)習(xí)未知頻譜的能力,大幅提升噪聲適應(yīng)性;同時(shí)通過改善模型泛化能力,使模型能精準(zhǔn)識(shí)別不同場(chǎng)景的電弧特征,真正將曾經(jīng)的兩大“攔路虎”化于無形。
奔赴從技術(shù)到標(biāo)準(zhǔn)的進(jìn)階之旅
從技術(shù)創(chuàng)新到行業(yè)標(biāo)準(zhǔn)體系的建立,通常有很長的路要走。AFCI也不例外,尤其在電網(wǎng)安全、信息安全上升到更高戰(zhàn)略地位的當(dāng)下,其跨越性的一躍直接關(guān)乎光儲(chǔ)產(chǎn)業(yè)的高質(zhì)量發(fā)展。
據(jù)了解,華為AFCI解決方案已獲得TUV 63027認(rèn)證、CGC鑒衡頒發(fā)的最高等級(jí)認(rèn)證L4,同時(shí)華為還是 IEC 63027國際標(biāo)準(zhǔn)編制項(xiàng)目組成員。以AFCI為突破口,與產(chǎn)業(yè)界及相關(guān)行業(yè)部門攜手推進(jìn)新型電力系統(tǒng)標(biāo)準(zhǔn)體系的建立,從根源上解除安全隱患,是華為矢志不渝的追求。
令人欣喜的是,積極的行動(dòng)已陸續(xù)展開,新一代安全標(biāo)準(zhǔn)的構(gòu)建與落地并不遙遠(yuǎn)。在歐洲、澳洲等地區(qū),很多國家已把光伏直流拉弧檢測(cè)和快速關(guān)斷作為屋頂光伏的必備標(biāo)準(zhǔn);在中國,國家標(biāo)委會(huì)、國家能源局等聯(lián)合發(fā)布《碳達(dá)峰碳中和標(biāo)準(zhǔn)體系建設(shè)指南》,將重點(diǎn)制訂新型電力系統(tǒng)電網(wǎng)側(cè)、電源側(cè)、負(fù)荷側(cè)、儲(chǔ)能側(cè)相關(guān)標(biāo)準(zhǔn)。
到2030年,我國以光伏為代表的新能源裝機(jī)占比將逾40%,新能源發(fā)電量占比超過20%。在奔赴雙碳目標(biāo)的征途上,需要更多類似AFCI這樣的安全利器,也期待華為數(shù)字能源及其志同道合的業(yè)界伙伴,能繼續(xù)為清潔能源的安全圖景添磚加瓦。
原標(biāo)題:智能化加持AFCI:光儲(chǔ)產(chǎn)業(yè)防范“晴空顛簸”的安全利器